Vincent Pacelli

Postdoctoral Fellow

Georgia Institute of Technology

1531 Belmont Ave SW Atlanta, GA, 30310 (412) 736-4275 vpacelli@gatech.edu http://pacel.li

Education

2017 – 2023 Princeton University, Princeton, NJ

Doctor of Philosophy, Mechanical and Aerospace Engineering

Advisor: Anirudha Majumdar

2016 – 2017 University of Pennsylvania, Philadelphia, PA

Master of Science in Engineering, Robotics

Advisor: Daniel E. Koditschek

2012 – 2016 University of Pennsylvania, Philadelphia, PA

Bachelor of Science in Engineering, Electrical Engineering, Cum Laude

Research Experience

Since 2023 Georgia Institute of Technology, Atlanta, GA,

Postdoctoral Fellow, Autonomous Controls and Decision Systems Laboratory My research focused on deriving and analyzing new algorithms for solving stochastic optimal control problems in robotics, deep learning, and generative AI using task-relevant information. Some examples include learning highly efficient, task-specific optimization solvers from data with provable performance guarantees, and developing a new diffusion model with embedded task-specific information to improve generalization. I coauthored a successful grant application which was awarded \$670k from the DARPA AI Quantified program.

2017 – 2023 Princeton University, Princeton, NJ,

Research Assistant, Intelligent Robot Motion Laboratory

My research focused on designing and analyzing task-driven robotic control systems which utilize only task-relevant information. I created both model-based and model-free algorithms that synthesize such controllers by enforcing that controls only depend on a small set of latent task-relevant variables. I demonstrate both empirically and theoretically that task-driven controllers generalize better to new environments than traditional designs. My research also included deriving the fundamental limit of task-driven control—i.e., a novel theoretical upper bound on the achievable task performance that can be reached by a robot with a specific sensor.

2016 – 2017 University of Pennsylvania, Philadelphia, PA,

Research Assistant, KodLab

I worked on developing new sampling-based motion planning algorithms that used local geometric and dynamical information to efficiently navigate cluttered workspaces.

Awarded Research Grants

2025 DARPA Artificial Intelligence Quantified, Coauthor, Award: \$670k
Privacy-Centric Generalization of Diffusion Models: A Stochastic Control and
Information Theoretic Perspective

This project aims to develop fundamental theory characterizing the generalization capabilities of Schrödinger bridge models (SBMs), a kind of state-of-the-art diffusion model, and utilize this theory to develop high performance training algorithms with improved data privacy. Coauthored with Evangelos Theodorou.

Peer-Reviewed Conference Publications

- [1] A. Ratheesh, V. Pacelli, A. D. Saravanos, and E. A. Theodorou, "Operator splitting covariance steering for safe stochastic nonlinear control," in *Proceedings of the Conference on Decision and Control*, IEEE, 2025, Accepted, In Press.
- [2] A. Ratheesh, V. Pacelli, and E. A. Theodorou, "Metrosky: High-fidelity photorealistic simulator for urban air mobility vehicles," in *SCITECH Forum*, AIAA, 2025.
- [3] A. D. Saravanos, H. Kuperman, A. Oshin, A. T. Abdul, V. Pacelli, and E. Theodorou, "Deep distributed optimization for large-scale quadratic programming," in *Proceedings of the International Conference on Learning Representations*, 2025.
- [4] P. Theodoropoulos, N. Komianos, V. Pacelli, G.-H. Liu, and E. A. Theodorou, "Feedback schrödinger bridge matching," in *Proceedings of the International Conference on Learning Representations*, 2025.
- [5] A. Majumdar and V. Pacelli, "Fundamental performance limits for sensor-based robot control and policy learning," in *Proceedings of Robotics: System and Science*, 2022.
- [6] V. Pacelli and A. Majumdar, "Robust control under uncertainty via bounded rationality and differential privacy," in *Proceedings of the International Conference on Robotics and Automation*, IEEE, 2022, pp. 3467–3474.
- [7] A. Sonar, V. Pacelli, and A. Majumdar, "Invariant policy optimization: Towards stronger generalization in reinforcement learning," in *Proceedings of the Conference on Learning for Dynamics and Control*, PMLR, 2021, pp. 21–33.
- [8] V. Pacelli and A. Majumdar, "Learning Task-Driven Control Policies via Information Bottlenecks," in *Proceedings of Robotics: System and Science*, 2020.
- [9] V. Pacelli and A. Majumdar, "Task-driven estimation and control via information bottlenecks," in *Proceedings of the International Conference on Robotics and Automation*, IEEE, 2019, pp. 2061–2067.
- [10] V. Pacelli, O. Arslan, and D. E. Koditschek, "Integration of local geometry and metric information in sampling-based motion planning," in *Proceedings of the International Conference on Robotics and Automation*, IEEE, 2018, pp. 3061–3068.

[11] O. Arslan, V. Pacelli, and D. E. Koditschek, "Sensory steering for sampling-based motion planning," in *Proceedings of the International Conference on Intelligent Robots and Systems*, IEEE, 2017, pp. 3708–3715.

Journal Articles

[12] A. Majumdar, Z. Mei, and V. Pacelli, "Fundamental limits for sensor-based robot control," *International Journal of Robotics Research*, vol. 42, no. 12, pp. 1051–1069, 2023.

——— Patents

[13] R. Mangharam, M. E. O'Kelly, V. Pacelli, and M. A. Brady, "Systems of stacking interlocking blocks," U.S. Patent 11 213 747, 2022.

Dissertations

- [14] V. Pacelli, "Information-theoretic necessary and sufficient conditions for the task-driven control of robots," Ph.D. dissertation, Princeton University, 2023.
- [15] V. Pacelli, "Joint exploration of local metrics and geometry in sampling-based planning," M.S. thesis, University of Pennsylvania, 2017.

Talks and Presentations

- 2025 IEEE Conference on Decision and Control (Upcoming)
- 2022 Robotics: Systems and Science IEEE International Conference on Robotics and Automation
- 2021 APS March Meeting (Robo-Physics Session)
- 2020 Robotics: Systems and Science
- 2019 IEEE International Conference on Robotics and Automation Federal Aviation Association Joint University Program Quarterly Meeting Northeast Robotics Colloquium
- 2018 IEEE International Conference on Robotics and Automation

Awards and Honors

2020 Crocco Award for Teaching Excellence

Awarded by the faculty of the Mechanical and Aerospace Engineering Department at Princeton in recognition of outstanding performance as an Assistant in Instruction.

2018 Princeton SEAS Travel Grant

Awarded by the Princeton School of Engineering and Applied Science support of the presentation of my research at the International Conference on Robotics and Automation.

2018 IEEE RAS Travel Grant

Awarded by the IEEE Robotics and Automation Society in support of the presentation of my research at the International Conference on Robotics and Automation.

2016 Hon. Harold Berger Award, Undergraduate Award

Awarded to the senior design team in the Department of Electrical and Systems Engineering whose outstanding project (best of approx. 10) combines conceptual or technical innovation with entrepreneurial possibility.

Teaching Experience

SINCE 2023 Georgia Institute of Technology, Atlanta, GA,

Instructor of Record, AE4803 ROB: Robotic Systems and Autonomy

This course is a special topics course for undergraduates in aerospace engineering with senior standing (20-30 students per semester). It provides a broad introduction to a diverse set of topics in robotics, including: analytical mechanics, dynamical systems, state estimation, mapping, and reinforcement learning. I continue to expand and refine the course material to better reflect modern robotics methods every year.

2019 – 2020 Princeton University, Princeton, NJ,

Teaching Assistant, MAE345 / MAE549: Introduction to Robotics

This course is an introductory robotics course for both undergraduate and graduate students . I helped the instructor (Anirudha Majumdar) develop the course over two semesters by providing feedback on curriculum material, designing homework assignments, and creating lab assignments using robotics hardware.

2018 Princeton University, Princeton, NJ,

Student Instructor, AI4ALL

I volunteered as a student instructor for Princeton's AI4ALL program — a summer program that introduces high school students in underrepresented demographics to artificial intelligence and machine learning through hands-on projects. My responsibilities involved giving introductory lectures on machine learning algorithms as well as designing and advising projects for students interested in cybersecurity applications.

Academic and Professional Services Organizing Committee

2023 "Bridging the Lab-to-Real Gap: Conversations with Academia, Government, and Industry." Workshop at the IEEE Conference on Robotics and Automation. https://sites.google.com/view/lab2realgap

Peer Review

2025 IEEE Robotics and Automation Letters

IEEE International Conference on Intelligent Robots IEEE Transactions on Robotics

SINCE 2022 Autonomous Robots (Journal)

IEEE Conference on Decision and Control

SINCE 2021 Robotics: Systems and Science (Conference)

Learning for Decision and Control (Conference)

Workshop on the Algorithmic Foundations of Robotics (Conference)

SINCE 2019 International Journal of Robotics Research

Student Mentorship

Graduate Students

2025 Arjun Krishna (UPenn) Research Feedback and Guidance

SINCE 2024 Akash Ratheesh (Georgia Tech) Published Peer-Reviewed Paper

Benjamin Jung (Georgia Tech)

Undergraduate Students

2025 Ishan R. Swali (Georgia Tech) Academic and Research Guidance

2021 Anoopkumar Sonar (Princeton) Published First Peer-Reviewed Paper

2018 Divi Pachisia (Princeton) Research Credit

Gargi Sadalgekar (Princeton),

References

Evangelos A. Theodorou

Associate Professor
AE Department
Georgia Institute of Technology

 $\verb| evangelos.theodorou@gatech.edu| \\$

Anirudha Majumdar

Associate Professor
MAE Department
Princeton University
ani.majumdar@princeton.edu

Research Credit

Research Credit

Jaime Fernández Fisac

Assistant Professor ECE Department Princeton University jfisac@princeton.edu Dinesh Jayaraman

Assistant Professor CIS Department University of Pennsylvania dineshj@seas.upenn.edu